Results 1 to 9 of 9

Math Help - Proving : existance of the inverse/ bijective

  1. #1
    MHF Contributor arbolis's Avatar
    Joined
    Apr 2008
    From
    Teyateyaneng
    Posts
    1,000
    Awards
    1

    Proving : existance of the inverse/ bijective

    I don't know how to prove the following : Let f:A \to B be a function. Prove that f has an inverse if and only if f is bijective.
    I'm lacking of any idea about proving \Rightarrow and \Leftarrow.
    I'm asking for a little push in the right direction and not the full answer. Thanks a lot.
    P.S.: I got assigned to do this in a vector calculus class, if it helps.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    is up to his old tricks again! Jhevon's Avatar
    Joined
    Feb 2007
    From
    New York, USA
    Posts
    11,663
    Thanks
    3
    Quote Originally Posted by arbolis View Post
    I don't know how to prove the following : Let f:A \to B be a function. Prove that f has an inverse if and only if f is bijective.
    I'm lacking of any idea about proving \Rightarrow and \Leftarrow.
    I'm asking for a little push in the right direction and not the full answer. Thanks a lot.
    P.S.: I got assigned to do this in a vector calculus class, if it helps.
    as stated, your problem seems to have nothing to do with vector calculus. the notation used is for real valued functions. anyway, it is pretty straight forward. just jump into it and use the definitions.

    (=>) Assume f has an inverse, say g(x). We need to show that f is 1-1 and onto.

    (a) f is 1-1: Assume f(x) = f(y). Apply the inverse function to both sides to get x = y. so f is 1-1.

    (b) f is onto. Assume y is some element of B. Then it is an element of the domain of f inverse. and so, we have g(y) = x for some x in A. but this means f(g(y)) = f(x) which means...

    (<=) Assume f is bijective. You must show that there exists a function from B to A which has the properties of an inverse function.

    can you finish up?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor arbolis's Avatar
    Joined
    Apr 2008
    From
    Teyateyaneng
    Posts
    1,000
    Awards
    1
    Thanks a lot Jhevon. I'll try it probably tomorrow because I'm very busy for now.
    If I can't finish this up I'll ask for help here. (It is not probable, but sure.)
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor arbolis's Avatar
    Joined
    Apr 2008
    From
    Teyateyaneng
    Posts
    1,000
    Awards
    1
    \Rightarrow ) (a) :
    I assume f has an inverse, f^{-1}. (It means that if f(x)=y \Rightarrow f^{-1}(y)=x  \bold{ \{ \text{green} \}}).

    Let f(x)=y, so we have that f^{-1}(y)=x by \text{green}.
    If f(x)=f(z) with x and z \in \mathbb{A} then f(x)=f(z)=y \Rightarrow f^{-1}(y)=x and f^{-1}(y)=z \Rightarrow x=z so that f is injective.

    (b):
    Let y \in \mathbb{B} and f(x)=y for some x \in \mathbb{A}.
    By \text{green} we have that f^{-1}(y)=x for some x \in \mathbb{A}, but this says that f(f^{-1}(y))=f(x). In other words that \forall y \in \mathbb{B}, \exists x such that f(f^{-1}(y))=f(x) \Leftrightarrow \forall y \in \mathbb{B}, \exists x such that f(x)=y hence f is surjective.
    Hence f is bijective.
    \Leftarrow ) :
    Let f be bijective with dom f= \mathbb{A} and Im f= \mathbb{B}.
    As f is injective, f(a)\neq f(b)\Rightarrow a\neq b.
    As f is surjective, \forall y \in \mathbb{B}, \exists a \in \mathbb{A} such that f(a)=y. Each element of \mathbb{B} has an antecedent in \mathbb{A}.
    Hence there exists a function g such that g(y)=a and g(z) \neq a \forall z \in \mathbb{B} and z \neq y.
    If f(a)=y \Rightarrow g(y)=a, which means f is invertible. (Proof completed.)

    I hope I didn't make any error.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    is up to his old tricks again! Jhevon's Avatar
    Joined
    Feb 2007
    From
    New York, USA
    Posts
    11,663
    Thanks
    3
    Quote Originally Posted by arbolis View Post
    \Rightarrow ) (a) :
    I assume f has an inverse, f^{-1}. (It means that if f(x)=y \Rightarrow f^{-1}(y)=x  \bold{ \{ \text{green} \}}).

    Let f(x)=y, so we have that f^{-1}(y)=x by \text{green}.
    If f(x)=f(z) with x and z \in \mathbb{A} then f(x)=f(z)=y \Rightarrow f^{-1}(y)=x and f^{-1}(y)=z \Rightarrow x=z so that f is injective.
    this is correct. but it is an awkward way to set it up.

    i would rather use the rule that f^{-1}(f(x)) = x for all x \in \text{dom}(f).

    so, f(x) = f(y) \implies f^{-1}(f(x)) = f^{-1}(f(y)) \Longleftrightarrow x = y.


    (b):
    Let y \in \mathbb{B} and f(x)=y for some x \in \mathbb{A}.
    sorry, you are begging the question here. unless, you are stating what you want to prove here. in which case, you should begin the next line by: "Assume y \in B".

    By \text{green} we have that f^{-1}(y)=x for some x \in \mathbb{A}, but this says that f(f^{-1}(y))=f(x).
    using the rule i mentioned earlier, you could stop here.

    In other words that \forall y \in \mathbb{B}, \exists x such that f(f^{-1}(y))=f(x) \Leftrightarrow \forall y \in \mathbb{B}, \exists x such that f(x)=y hence f is surjective.
    Hence f is bijective.
    superfluous, i think, as i mentioned above.

    \Leftarrow ) :
    Let f be bijective with dom f= \mathbb{A} and Im f= \mathbb{B}.
    As f is injective, f(a)\neq f(b)\Rightarrow a\neq b.
    this is false. this is not what injective means. in fact, this is the converse of what it means to be injective.

    As f is surjective, \forall y \in \mathbb{B}, \exists a \in \mathbb{A} such that f(a)=y. Each element of \mathbb{B} has an antecedent in \mathbb{A}.
    Hence there exists a function g such that g(y)=a and g(z) \neq a \forall z \in \mathbb{B} and z \neq y.
    If f(a)=y \Rightarrow g(y)=a, which means f is invertible. (Proof completed.)

    I hope I didn't make any error.
    it seems you relied on your definition of injective to do this. so it is wrong.

    for this direction, i would use the fact that a function is a relation. that is, we can think of f as the set \{ (a,b) \mid a \in A \text{ and } b \in B \}. now, you just want to show that the inverse relation, \{ (b,a) \mid a \in A \text{ and } b \in B \} is also a function. that is, you have to show that each b \in B appears as a first coordinate in a pair once and only once. this will happen provided f is bijective
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor arbolis's Avatar
    Joined
    Apr 2008
    From
    Teyateyaneng
    Posts
    1,000
    Awards
    1
    Thank you Jhevon for your detailed answer.
    I have 2 questions : For proving \Rightarrow ), (b) : if I start by "Assume that y \in B " and I follow as I did, do I prove that f is bijective?

    Second question, I don't see why what I wrote is false :
    As is injective, .
    You said :
    this is false. this is not what injective means. in fact, this is the converse of what it means to be injective.
    When I think about an injective function, I can imagine a function which is strictly increasing or decreasing over the interval it is injective. So for me, taking 2 different values f(a) and f(b) means that these values have a different antecedent. I don't see where I make an error by doing so.
    The definition of injective states that if f(a)=f(b) then a=b.
    I think that in logic if A implies B, then A implies B which is what I think I've done. So if the former is true, so is the latter... or I'm mixing things up?


    This (calculus I ?) problem arises in my vector calculus course in the chapter of inverse functions. Maybe it's just a review, but I'm strongly willing to fill my weaknesses on basic properties.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    is up to his old tricks again! Jhevon's Avatar
    Joined
    Feb 2007
    From
    New York, USA
    Posts
    11,663
    Thanks
    3
    Quote Originally Posted by arbolis View Post
    Thank you Jhevon for your detailed answer.
    I have 2 questions : For proving \Rightarrow ), (b) : if I start by "Assume that y \in B " and I follow as I did, do I prove that f is bijective?
    yes, what you wrote after would work. it does prove bijectivity. i think it can be refined though, as i directed

    Second question, I don't see why what I wrote is false : You said : When I think about an injective function, I can imagine a function which is strictly increasing or decreasing over the interval it is injective. So for me, taking 2 different values f(a) and f(b) means that these values have a different antecedent. I don't see where I make an error by doing so.
    The definition of injective states that if f(a)=f(b) then a=b.
    I think that in logic if A implies B, then A implies B which is what I think I've done. So if the former is true, so is the latter... or I'm mixing things up?
    in red is your mistake. A => B is NOT the same as ~A => ~B. (do the truth table for both, you will see they are not the same). A => B is equivalent to ~B => ~A. thus, to use not equal, you must show that a \ne b \implies f(a) \ne f(b)

    (note that a parabola fulfills your definition, parabolas are not injective)

    This (calculus I ?) problem arises in my vector calculus course in the chapter of inverse functions. Maybe it's just a review, but I'm strongly willing to fill my weaknesses on basic properties.
    yes, it is a good review. take your time to get these concepts straight.
    Last edited by Jhevon; May 13th 2009 at 06:55 PM.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    MHF Contributor arbolis's Avatar
    Joined
    Apr 2008
    From
    Teyateyaneng
    Posts
    1,000
    Awards
    1
    Hey Jhevon, many thanks!
    I'll take note of the exercise. I wasn't aware of my logic error. I'm very glad to know about this mistake...
    I've many exams coming very soon and after them I'll try to redo this problem in a better way.
    Just a very last question (for these days at least) : in post #2, you said :
    (a) f is 1-1: Assume f(x) = f(y). Apply the inverse function to both sides to get x = y. so f is 1-1.
    By the inverse function, do you mean I take f^{-1}(f(x))=f^{-1}(f(y)) \Rightarrow x=y ?
    If so, I saw it, but I didn't realize it proved f is injective!
    Follow Math Help Forum on Facebook and Google+

  9. #9
    is up to his old tricks again! Jhevon's Avatar
    Joined
    Feb 2007
    From
    New York, USA
    Posts
    11,663
    Thanks
    3
    Quote Originally Posted by arbolis View Post
    Hey Jhevon, many thanks!
    I'll take note of the exercise. I wasn't aware of my logic error. I'm very glad to know about this mistake...
    I've many exams coming very soon and after them I'll try to redo this problem in a better way.
    well, good. doing some more problems like these will help expose any other errors you may think are true.

    try proving some other basic results about functions. for example, if f(x) and g(x) are bijective, then f(g(x)) is bijective.

    things of that nature. give two functions arbitrary properties, and prove whether or not their composition possess the same properties.

    Just a very last question (for these days at least) : in post #2, you said : By the inverse function, do you mean I take f^{-1}(f(x))=f^{-1}(f(y)) \Rightarrow x=y ?
    If so, I saw it, but I didn't realize it proved f is injective!
    yes, in fact, that is what i did in post #5. it proves it is injective since we showed that f(x) = f(y) => x = y
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Range and inverse of bijective functions
    Posted in the Algebra Forum
    Replies: 22
    Last Post: November 16th 2009, 12:25 PM
  2. Replies: 1
    Last Post: November 1st 2009, 02:35 PM
  3. Replies: 1
    Last Post: April 21st 2009, 10:45 AM
  4. I need help on inverse of bijective function.
    Posted in the Algebra Forum
    Replies: 1
    Last Post: April 28th 2008, 04:38 PM
  5. Proving bijective functions
    Posted in the Discrete Math Forum
    Replies: 7
    Last Post: November 29th 2007, 11:31 AM

Search Tags


/mathhelpforum @mathhelpforum