Find the volume of the solid that the cylinder r=a cos theta cuts out of the sphere of radius a centered at the origin using triple integrals and spherical or cylindrical coordinates
Find the volume of the solid that the cylinder r=a cos theta cuts out of the sphere of radius a centered at the origin using triple integrals and spherical or cylindrical coordinates
thanks
$\displaystyle \int_{\frac{- \pi}{2}}^{\frac{\pi}{2}} \int_0^{a \cos \theta} \int_{-\sqrt{a^2 - r^2}}^{\sqrt{a^2 - r^2}} r \ dz \ dr \ d \theta$