Problem: ∫$\displaystyle (t+1)^2/t^2$. Substitution. No Integration by Parts.
Attempt: I don't see any easy way :\
substitution? why make this harder than it really is ?
$\displaystyle \int \frac{(t+1)^2}{t^2} \, dt$
$\displaystyle \int \frac{t^2 + 2t + 1}{t^2} \, dt$
$\displaystyle \int 1 + \frac{2}{t} + \frac{1}{t^2} \, dt$
$\displaystyle t + 2\ln|t| - \frac{1}{t} + C$