Results 1 to 2 of 2

Thread: Missing apex on a parallelogram

  1. #1
    Member
    Joined
    Sep 2007
    Posts
    94

    Missing apex on a parallelogram

    Let A=(1,0,-2), B=(-1,1,2),C=(3,4,0)

    (a) Find the point D such that ABCD is a parallelogram where the apex D is opposite to A.

    (b) Write parametric equations and symmetric equations of the line L passing through D and parallel to the segment BC.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    12,028
    Thanks
    848
    Hello, Undefdisfigure!

    Let: .$\displaystyle A=(1,0,\text{-}2),\;\; B=(\text{-}1,1,2),\;\;C=(3,4,0)$

    (a) Find point $\displaystyle D$ such that $\displaystyle ABCD$ is a parallelogram where vertex $\displaystyle D$ is opposite $\displaystyle A.$
    We would find vector $\displaystyle AB$ like this . . .

    . . $\displaystyle \overrightarrow{AB} \;=\;\underbrace{(\text{-}1,1,2)}_B - \underbrace{(1,0,\text{-}2)}_A \;=\;\langle\text{-}2,1,4\rangle$


    Let $\displaystyle D \,=\,(x,y,z)$
    We know that: .$\displaystyle \overrightarrow{AB} \,=\,\overrightarrow{CD}$


    We would find vector CD like this:

    . . $\displaystyle CD \;=\;(x,y,z) - (3,4,0) \:=\:\langle \text{-}2,1,4\rangle \quad\Rightarrow\quad \langle x-3,y-4,z-0\rangle \:=\:\langle \text{-}2,1,4\rangle$

    So we have: .$\displaystyle \begin{array}{ccc}x-3 \:=\:\text{-}2 & \Rightarrow & x \:=\:1 \\ y-4\:=\:1 & \Rightarrow & y \:=\:5 \\ z - 0 \:=\:4 & \Rightarrow & z \:=\:4 \end{array}$


    Therefore: .$\displaystyle D(1,5,4)$




    (b) Write parametric equations and symmetric equations of the line $\displaystyle L$
    passing through $\displaystyle D$ and parallel to the segment $\displaystyle BC.$

    The direction of $\displaystyle \overrightarrow{BC}$ is: .$\displaystyle \vec v \;=\;(3,4,0) - (\text{-}1,1,2) \;=\;\langle 4,3,\text{-}2\rangle$


    The line through $\displaystyle D(1,5,4)$ with direction $\displaystyle \vec v \:=\:\langle 4,3,\text{-}2\rangle$ has equations:

    . . . . $\displaystyle \begin{array}{ccc}x &=& 1 + 4t \\ y &=& 5 + 3t \\ z &=& 4 - 2t \end{array}$ . . and . . $\displaystyle \frac{x-1}{4} \:=\:\frac{y-5}{3} \:=\:\frac{z-4}{-2} $

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: Nov 14th 2011, 08:23 AM
  2. Replies: 2
    Last Post: Oct 13th 2010, 12:03 PM
  3. parallelogram
    Posted in the Geometry Forum
    Replies: 2
    Last Post: Apr 21st 2010, 03:54 AM
  4. Parallelogram
    Posted in the Geometry Forum
    Replies: 1
    Last Post: Nov 26th 2007, 02:10 PM
  5. Relationship between apex and derivative
    Posted in the Calculus Forum
    Replies: 3
    Last Post: Aug 19th 2005, 01:06 AM

Search Tags


/mathhelpforum @mathhelpforum