Results 1 to 1 of 1

Math Help - Spherical polar coordinates =p

  1. #1
    Super Member Showcase_22's Avatar
    Joined
    Sep 2006
    From
    The raggedy edge.
    Posts
    782

    Spherical polar coordinates =p

    Consider the region: \Omega:=\{(x,y,z) \in \mathbb{R}^3| y \geq 0, z \geq 0, x^2+y^2 \leq 4 \}.

    Note: \Omega is the half of the upper solid hemisphere of radius 2 which lies to the right of the x-z plane.

    Use spherical polar coordinates to evaluate \int \int \int_ {\Omega} \frac{yze^{-x}}{\sqrt{x^2+y^2}}~dx~dy~dz.
    Methinks I have to integrate \int_0^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^1 r^2 sin (\phi)\left( \frac{rsin (\theta) sin (\phi) r cos (\phi) e^{-r cos(\theta) sin (\phi)}}{\sqrt{(rsin(\theta) cos(\phi))^2+(rsin(\theta) sin (\phi))^2}}  \right) dr~d \phi~ d \theta

    \int_0^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^1 r^4 sin(\phi) \left( \frac{sin(\theta) sin(\phi) cos(\phi)e^{-rcos(\theta)sin(\phi)}}{r sin(\theta)} \right)~dr~d \phi~d \theta

    \int_0^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^1 r^3 sin^2 (\phi)cos(\phi)e^{-rcos(\theta) sin(\phi)}~dr~d \phi~d \theta

    Is this right? The integral seems so complicated!!
    Last edited by Showcase_22; May 25th 2009 at 01:31 PM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Spherical Polar Coordinates
    Posted in the Advanced Applied Math Forum
    Replies: 9
    Last Post: March 22nd 2011, 02:44 AM
  2. Want to clarify polar, spherical coordinates.
    Posted in the Advanced Applied Math Forum
    Replies: 6
    Last Post: August 26th 2010, 03:29 PM
  3. Spherical and polar coordinates.
    Posted in the Geometry Forum
    Replies: 3
    Last Post: January 24th 2009, 08:00 AM
  4. using spherical polar coordinates
    Posted in the Calculus Forum
    Replies: 2
    Last Post: October 23rd 2008, 06:29 AM
  5. Loci in spherical-polar coordinates
    Posted in the Calculus Forum
    Replies: 0
    Last Post: October 19th 2008, 02:13 PM

Search Tags


/mathhelpforum @mathhelpforum