1. ## Optimization parabola/triangle

An isoceles triangle with vertices (0,0), (x,y) & (-x,y) is inscribed in the parabola y=4-x^2

What x & y will give triangle max area and what is that area?

I'm unsure of my first move to get an A(x).

Edit: also to I need to split my triangle into halves for this?

2. Originally Posted by mattc
An isoceles triangle with vertices (0,0), (x,y) & (-x,y) is inscribed in the parabola y=4-x^2

What x & y will give triangle max area and what is that area?

I'm unsure of my first move to get an A(x).

Edit: also to I need to split my triangle into halves for this?
$A = \frac{1}{2}bh$

$A(x) = \frac{1}{2}(2x)(y) = x(4-x^2)$

3. great thanks I was afraid it was that simple.

I found the A'(x) to get to the CV points.

$
A'(x) = -3x^2+4
$

I know important parts of the parabola are max at (0,4) and y=0 at x=-2 & 2. So I know where the triangle contained. Do I plug the x values into A'(x)?

4. I ended up with (-1.15, 2.68) and (1.15, 2.68) and an area of 3.08 units cubed. My graph of A'(x) and critical points with the original function all seem to fit. Is this correct?

,
,
,

,

,

,

,

,

,

,

,

,

,

,

# how to unscribe a.lagest.triangle in a para bola

Click on a term to search for related topics.