Evaluate : *integral sign* ln (abs(x)) dx
Follow Math Help Forum on Facebook and Google+
Originally Posted by soccerballboy20 Evaluate : *integral sign* ln (abs(x)) dx integration by parts ... $\displaystyle u = \ln|x|$ ... $\displaystyle du = \frac{1}{x} \, dx$ $\displaystyle dv = dx$ ... $\displaystyle v = x$ $\displaystyle \int \ln|x| \, dx = x\ln|x| - \int x \cdot \frac{1}{x} \, dx$ finish up ...
what do you mean finish up?
He gave you $\displaystyle x\ln|x| - \int x \cdot \frac{1}{x} \, dx$ You need to finish integrating
so would that then result in the answer: = x ln|x| -(x/2)(ln|x|) ??
$\displaystyle x * \frac{1}{x} = 1$ $\displaystyle xlnx - \int dx$ $\displaystyle xlnx - x$ is your answer
View Tag Cloud