Calculate the integral \int \int_{ \alpha} f(x,y,z) ds in surface. \alpha is represented by function vector r(u,v)


f(x,y,z) = \frac{1}{ \sqrt{1+4x^2+4y^2}}
r(u,v) = ucosv i + usenv j + u k
(0 \leq u \leq senv, 0 \leq v \leq \pi)