Calculate the integral $\displaystyle \int \int_{ \alpha} f(x,y,z) ds$ in surface. $\displaystyle \alpha$ is represented by function vector $\displaystyle r(u,v)$


$\displaystyle f(x,y,z) = \frac{1}{ \sqrt{1+4x^2+4y^2}}$
$\displaystyle r(u,v) = ucosv i + usenv j + u k$
$\displaystyle (0 \leq u \leq senv, 0 \leq v \leq \pi)$