1. ## Theorem of Green

If C is the triangle of vertices (0,0), (1,0) and (1,1) oriented in direction anti-clockwise

$\int_C 2xydx + (x^2+x)dy = ?$

Solution:

$\frac{ \partial (x^2+x)}{ \partial x} - \frac{ \partial (2xy)}{ \partial y} = 1$

$1 \int \int_D dxdy = \int_0^1 \int_0^1 dxdy = 1$

Correct ????

2. Not quite

Green's Thm --- Line Integral = integral(dg/dx-df/dy) over the region enclosed by the C

you computed dg/dx-df/dy correctly = 1

so the line integral is the area of the triangle then which is 1/2

3. Originally Posted by Calculus26
Not quite

Green's Thm --- Line Integral = integral(dg/dx-df/dy) over the region enclosed by the C

you computed dg/dx-df/dy correctly = 1

so the line integral is the area of the triangle then which is 1/2
$\int_a^b$
How do I determine a and b ?

4. $
\int_0^1\int_0^x dy\,dx
$

5. Originally Posted by danny arrigo
$
\int_0^1\int_0^x dy\,dx
$
How did you know $\int_0^1\int_0^x dy\,dx$ ?

6. I know you know how to set up a double integral otherwise you wouldn't be doing line integrals and green's theorem.

the equation of the line from (0,0) to (1,1)

is y = x

so y varies from 0 to x as x varies from 0 to 1

7. Of course. thanks

8. Originally Posted by Apprentice123

How did you know $\int_0^1\int_0^x dy\,dx$ ?
Here is the region of interest. In order to set up

$\iint_R f(x,y)\,dA$ then we would need the following

$
\int_{\text{point}}^{\text{point}}
\int_{\text{curve}}^{\text{curve}} f(x,y)\,dy\,dx$
.

Since the inner integral involves $dy$ then the curve to cuve in in the $y$ direction and in your case $y=0 \to x$ and hence the inside integral $\int_0^x$. Then outer integral is point to point and since the outer involves $dx$ then we are moving in the $x$ direction and from the picture of the region it $x = 0 \to 1$ and hence the outer integral of $\int_0^1.$

Hope that helps.

9. Originally Posted by danny arrigo
Here is the region of interest. In order to set up

$\iint_R f(x,y)\,dA$ then we would need the following

$
\int_{\text{point}}^{\text{point}}
\int_{\text{curve}}^{\text{curve}} f(x,y)\,dy\,dx$
.

Since the inner integral involves $dy$ then the curve to cuve in in the $y$ direction and in your case $y=0 \to x$ and hence the inside integral $\int_0^x$. Then outer integral is point to point and since the outer involves $dx$ then we are moving in the $x$ direction and from the picture of the region it $x = 0 \to 1$ and hence the outer integral of $\int_0^1.$

Hope that helps.

Thank you