use substitution to evaluate the definite integral \int_e^e^2{dx\ x(lnx)^2}
Assuming it is $\displaystyle \int_e^{e^2} \frac {dx}{x (\ln x)^2}$, use $\displaystyle u = \ln x$. Thus $\displaystyle du = \frac{dx}{x}$. The bounds become $\displaystyle \ln(e)\to\ln(e^2) = 1\to 2$
Now you have $\displaystyle \int_1^2\frac{du}{u^2}$
If you need it:
Spoiler: