1. ## Taylor's Inequality

ok i dont know how to find the error bound plz help?

(a) Approximate f by a Taylor polynomial with degree n at the number a.
T2(x) = Enter a mathematical expression.
12+(1/4)*(x-4)-(1/64)*(x-4)^2

(b) Use Taylor's Inequality to estimate the accuracy of the approximation f Tn(x) when x lies in the given interval. (Round the answer to six decimal places.)

i think i find M to be .001953125 to use in the formula (M/(n+1)!)|x-a|^n+1 but i dont know what to do on this anyone help? THANKS!

2. Originally Posted by ahawk1
ok i dont know how to find the error bound plz help?

(a) Approximate f by a Taylor polynomial with degree n at the number a.
T2(x) = Enter a mathematical expression.
12+(1/4)*(x-4)-(1/64)*(x-4)^2

(b) Use Taylor's Inequality to estimate the accuracy of the approximation f Tn(x) when x lies in the given interval. (Round the answer to six decimal places.)

i think i find M to be .001953125 to use in the formula (M/(n+1)!)|x-a|^n+1 but i dont know what to do on this anyone help? THANKS!
I believe the approximation of the function using a Taylor polynomial of degree 2 should be:

$2 + \frac{x - 4}{4} - \frac{(x-4)^2}{64}$

3. Originally Posted by icemanfan
I believe the approximation of the function using a Taylor polynomial of degree 2 should be:

$2 + \frac{x - 4}{4} - \frac{(x-4)^2}{64}$
i already had that in my answer up top but i need to know the error bound not that actual polynomial but thanks!