I'm supposed to use the power series:

$\displaystyle \frac{1}{1+x} = \sum^ \infty_ {n=0} (-1)^nx^n$ to determine a power series, centered at 0, for the function. Indentify the interval of convergence.

Did I do this right?

$\displaystyle f(x) = ln(1-x^2) = \int \frac{1}{1+x}dx - \int \frac{1}{1-x}dx$

$\displaystyle ln(1-x^2) = \int (\sum^ \infty_ {n=0}(-1)^n(x^2)^n)dx$

=> $\displaystyle C + \sum^ \infty_ {n=0} \frac{(-1)^n(x^{2n+2})}{n+1}$