# Thread: Particular solution to a differential equations

1. ## Particular solution to a differential equations

Find the particular solution to $y^{(4)}+5y''+4y = \sin x + \cos 2x$

First, I found that the general solution is $y_h=$ $C_1 \cos (2x) + C_2 \sin (2x) + C_3 \cos (-2x) +$ $C_4 \sin (-2x) + C_5 \cos (x) + C_6 \sin (x) + C_7 \cos (-x) + C_8 \sin (-x)$

So the list of terms that I obtain here is: $\{ \cos (2x), \sin (2x), \cos (-2x) , \sin (-2x) , \cos (x) , \sin (x) , \cos (-x) , \sin (-x) \}$

Now, for my guess of the particular solution, I have list of terms $\{ \sin x , \cos (2x) \}$

Since I have repeats, I would take the derivative, so I have new list $\{ \sin x , \cos x , \cos (2x) , \sin (2x) \}$

So my particular solution is: $y_p = A \sin x + B \cos x + C \cos (2x) + D \sin (2x)$

I know I'm missing something, I think I'm suppose to multiply x by one of the list, but I just can't remember what the method was, please help. Thanks.

Find the particular solution to $y^{(4)}+5y''+4y = \sin x + \cos 2x$

First, I found that the general solution is $y_h=$ $C_1 \cos (2x) + C_2 \sin (2x) + C_3 \cos (-2x) +$ $C_4 \sin (-2x) + C_5 \cos (x) + C_6 \sin (x) + C_7 \cos (-x) + C_8 \sin (-x)$

So the list of terms that I obtain here is: $\{ \cos (2x), \sin (2x), \cos (-2x) , \sin (-2x) , \cos (x) , \sin (x) , \cos (-x) , \sin (-x) \}$

Now, for my guess of the particular solution, I have list of terms $\{ \sin x , \cos (2x) \}$

Since I have repeats, I would take the derivative, so I have new list $\{ \sin x , \cos x , \cos (2x) , \sin (2x) \}$

So my particular solution is: $y_p = A \sin x + B \cos x + C \cos (2x) + D \sin (2x)$

I know I'm missing something, I think I'm suppose to multiply x by one of the list, but I just can't remember what the method was, please help. Thanks.
First off, you have some redundancy. The complimentary solution is only

$y = c_1 \sin x + c_2 \cos x + c_3 \sin 2x + c_4 \cos 2x$

Second, since the homogeneous terms appears as part of your complimentary solution you would need to seek a particluar solution of the form

$y = c_1 x \sin x + c_2 x \cos x + c_3 x \sin 2x + c_4 x \cos 2x$

3. So if the same terms appear, I just need to multiply everything by x?

So if the same terms appear, I just need to multiply everything by x?
Yes or higher. For example

$y'' - 2y' + y = e^x$

For the particular solution you'll need $y_p = Ax^2 e^x$ as $e^x\;\text{and}\; x e^x$ are a part of the complimentary solution.

5. So for $y''+2y'-3y=1-xe^x$

I have the complimentary solution $y = C_1e^{-3x}+C_2e^x$

So my terms are $\{ 1 , xe^x \}$

But this time there are no repeats, and I tried with $y=A+Bxe^x$, but things went wrong, everything cancel, what should I do next?

So for $y''+2y'-3y=1-xe^x$

I have the complimentary solution $y = C_1e^{-3x}+C_2e^x$

So my terms are $\{ 1 , xe^x \}$

But this time there are no repeats, and I tried with $y=A+Bxe^x$, but things went wrong, everything cancel, what should I do next?
Because $e^x$ is a part of your complimentary solution and $x e^x$ is a part of your homogeneous term, then you would seek a particular solution of the form

$y_p = A x e^x + B x^2 e^x$.

7. Okay, I tried with this particular solution, but weird things happened:

After plugging in everything to the original equations, I have the following:

$y=Axe^x+Bx^2e^x$
$y'=Ae^x+(A+2B)xe^x+Bx^2e^x$
$y''=(A+2B)e^x+(A+2B)xe^x+Bx^2e^x$

So I have

$(B+2b-3B)x^2e^x+(A+2B+2A+4B-3A)xe^x+(A+2B+2A)e^x=1+xe^x$
$(3A+2B)e^x+(6B)xe^x=1+(1)xe^x$

But I don't have anything on the left to equal to the 1 on the right, what am I doing wrong? I really feel stupid now because I'm actually tutoring this class, I took DEQ like 3 years ago, I JUST CAN'T UNDERSTAND WHY I AM NOT GETTING THIS RIGHT AS A GRADUATE STUDENT!!!!

Perhaps I need $y_p=A+Bxe^x+Cx^2e^x$ because of the constant term in the RHS?

So for $y''+2y'-3y=1-xe^x$
I have the complimentary solution $y = C_1e^{-3x}+C_2e^x$

So my terms are $\{ 1 , xe^x \}$

But this time there are no repeats, and I tried with $y=A+Bxe^x$, but things went wrong, everything cancel, what should I do next?
Okay, I tried with this particular solution, but weird things happened:

After plugging in everything to the original equations, I have the following:

$y=Axe^x+Bx^2e^x$
$y'=Ae^x+(A+2B)xe^x+Bx^2e^x$
$y''=(A+2B)e^x+(A+2B)xe^x+Bx^2e^x$

So I have

$(B+2b-3B)x^2e^x+(A+2B+2A+4B-3A)xe^x+(A+2B+2A)e^x=1+xe^x$
$(3A+2B)e^x+(6B)xe^x=1+(1)xe^x$

But I don't have anything on the left to equal to the 1 on the right, what am I doing wrong? I really feel stupid now because I'm actually tutoring this class, I took DEQ like 3 years ago, I JUST CAN'T UNDERSTAND WHY I AM NOT GETTING THIS RIGHT AS A GRADUATE STUDENT!!!!

Perhaps I need $y_p=A+Bxe^x+Cx^2e^x$ because of the constant term in the RHS?
Originally Posted by danny arrigo
Because $e^x$ is a part of your complimentary solution and $x e^x$ is a part of your homogeneous term, then you would seek a particular solution of the form

$y_p = A x e^x + B x^2 e^x$.
This is how to find the particular solution corresponding to the $-x e^x$ term on the RHS of the DE.

To find the particular solution corresponding to the constant term on the RHS of the DE you try one of the form y = a and get a = -1/3.

Then you add these two particular solutions together to get the overall particular solution.