Results 1 to 2 of 2

Math Help - Log derivatives

  1. #1
    Newbie
    Joined
    Nov 2006
    Posts
    5

    Question Log derivatives

    Differenciate
    1. F(x)= 5th root(lnx)
    2. f(x)= sqroot(x) * ln(x)
    3. F(t)= ln((2t+1)^3)/(3t-1)^4))

    thanks for any help!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,658
    Thanks
    598
    Hello, Dr. Noobles!

    1)\;f(x)\:= \:\sqrt[5]{\ln x}

    We have: . f(x)\;=\;\left(\ln x\right)^{\frac{1}{5}}

    Chain Rule: . f'(x)\;=\;\frac{1}{5}\left(\ln x\right)^{-\frac{4}{5}}\cdot\frac{1}{x} \;= \;\frac{1}{5x}\left(\ln x\right)^{-\frac{4}{5}} \;=\;\frac{1}{5x\left(\ln x\right)^{\frac{4}{5}}}



    2)\;f(x)\:= \:\sqrt{x}\cdot\ln x

    We have: . f(x)\;=\;x^{\frac{1}{2}}\cdot\ln x

    Product Rule: . f'(x)\;=\;x^{\frac{1}{2}}\!\cdot\!\frac{1}{x} + \frac{1}{2}x^{-\frac{1}{2}}\!\cdot\!\ln x \;= \;\frac{1}{x^{\frac{1}{2}}} + \frac{\ln x}{2x^{\frac{1}{2}}} \;= \;\frac{2 + \ln x}{2\sqrt{x}}



    3)\;f(t) \:= \:\ln\left[\frac{(2t+1)^3}{(3t-1)^4}\right]

    Use log rules to simplify the function first . . .

    f(t) \:= \:\ln\left[\frac{(2t+1)^3}{(3t-1)^4}\right] \;=\;\ln(2t+1)^3 - \ln(3t-1)^4 \;=\;3\ln(2t+1) - 4\ln(3t-1)

    Then: . f'(t)\;=\;3\!\cdot\!\frac{1}{2t+1}\!\cdot\!2 - 4\!\cdot\!\frac{1}{3t-1}\!\cdot\!3 \;=\;\frac{6}{2t+1} - \frac{12}{3t-1}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Derivatives and Anti-Derivatives
    Posted in the Calculus Forum
    Replies: 7
    Last Post: February 6th 2011, 06:21 AM
  2. Replies: 1
    Last Post: July 19th 2010, 04:09 PM
  3. Derivatives with both a and y
    Posted in the Calculus Forum
    Replies: 3
    Last Post: October 4th 2009, 09:17 AM
  4. Replies: 4
    Last Post: February 10th 2009, 09:54 PM
  5. Trig derivatives/anti-derivatives
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 10th 2009, 01:34 PM

Search Tags


/mathhelpforum @mathhelpforum