# Thread: Calculus with Parametric Curves

1. ## Calculus with Parametric Curves

x=2cos(theta)
y=sin(2theta)

I have to find the coordinates of the horizontal and vertical tangents to this problem. I know that the top of the derivative must be 0 for horizontal and 0 on the bottom for the vertical but how do I go about finding the cartesian coordinates?

2. Originally Posted by aaronb
x=2cos(theta)
y=sin(2theta)

I have to find the coordinates of the horizontal and vertical tangents to this problem. I know that the top of the derivative must be 0 for horizontal and 0 on the bottom for the vertical but how do I go about finding the cartesian coordinates?
Here is how you would find the horizontal tangents...

$\frac{d y}{d \theta}=2\cos(2\theta)$

So we set it equal to zero to get

$\cos(2\theta)=0 \iff 2\theta=\frac{\pi}{2}+n \pi$ where n is an integer

$\theta=\frac{\pi+2n\pi}{4}=\frac{(2n+1)\pi}{4}$

Now to get the cartesian coordinates plug the values of theta into your parametric equations so when n=0 we get pi/4 so

$x=2\cos(\frac{\pi}{4})=\sqrt{2}$

$y=\sin(\frac{\pi}{2})=1$

so ONE of the ordered pairs is $(\sqrt{2},1)$

This should get you started you will need to use more values of n to find the rest.

Hint there are 4 horizontal tangents and 2 vertical good luck.

3. I think I got this.

I keep on plugging in integers for n until it exceeds the period of 2pi then I would be done.

4. x = 2cosu
y = sin2u = 2sinu cosu = sinu (2cosu)=x sinu
sinu = y/x
cosu = | sqrt[ 1- (sinu)^2 ] | = | sqrt[ 1 - y^2 / x^2 ] |

x = 2| sqrt[ 1 - y^2 / x^2 ] | => x^2 = 2| sqrt(x^2 - y^2) |