Find the eqn of the plane in the form r.n=p, which contains the line, l, and the point with position vector, a, where
l: r=-2i +3j-k +t(2i-j-3k) a=-3i+j+2k
Any help on working out n?
$\displaystyle \begin{gathered}
n = \left\langle {2, - 1, - 3} \right\rangle \times \left\langle {-3 + 2,1 - 3,2 + 1} \right\rangle \hfill \\
\Pi :n \cdot \left\langle {x - 3,y - 1,z - 2} \right\rangle = 0 \hfill \\
\end{gathered} $