Results 1 to 4 of 4

Math Help - calculus please, higher order derivatives

  1. #1
    Newbie amanda1410's Avatar
    Joined
    Nov 2006
    From
    essex, UK
    Posts
    3

    calculus please, higher order derivatives

    Neem some urgent help on these please, if possible can you show me the method also so I can work out simular ones please

    Follow Math Help Forum on Facebook and Google+

  2. #2
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Quote Originally Posted by amanda1410 View Post
    Neem some urgent help on these please, if possible can you show me the method also so I can work out simular ones please

    I will do,
    F'''(x)

    Do you see how to take derivative?
    You need derivative of,
    F''(x)=-2x(1+x^2)^{-2}
    Use product rule,
    (-2x)'(1+x^2)^{-2}+(-2x)[(1+x^2)^{-2}]'
    Thus, use chain rule on the second one,
    (-2)(1+x^2)^{-2}+(-2x)(2x)(-2)(1+x^2)^{-3}
    Thus,
    -2(1+x^2)^{-2}-8x^2(1+x^2)^{-3}
    Thus,
    -2(1+x^2)^{-2}[1+4x(1+x^2)^{-1}]
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,862
    Thanks
    743
    Hello, Amanda!

    This one of the more unpleasant functions to differentiate.
    I suggest using the Quotient Rule.
    . . Those negative exponents can be dangerous.

    It starts simply enough . . .

    f(x)\;=\;\tan^{-1}(x)

    f'(x)\;=\;\frac{1}{x^2+1}\;=\;(x^2+1)^{-1}

    f''(x)\;=\;-1(x^2+1)^{-1}\cdot2x \;=\;-2\,\frac{x}{x^2+1}

    . . If there is a coefficient, I "pull it out front".

    Now it gets very messy . . . simplify each derivative before continuing.

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    f'''(x)\;=\;-2\left[\frac{(x^2+1)\cdot1 - x\cdot2(x^2+1)\cdot2x}{(x^2+1)^4}\right]  \;=\;-2\left[\frac{(x^2+1)^2 - 4x^2(x^2+1)}{(x^2+1)^4}\right]

    Factor: . -2\,\frac{(x^2+1)\left(x^2+1 - 4x^2\right)}{(x^2+1)^4} \;= \;-2\,\frac{(1 - 3x^2)}{(x^2+1)^3} \;= \;2\,\frac{3x^2-1}{(x^2+1)^3}

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    f^{(4)}(x) \;=\;2\,\left[\frac{(x^2+1)^3\cdot6x - (3x^2-1)\cdot3(x^2+1)^2\cdot2x}{(x^2+1)^6}\right]

    . . . . . =\;2\left[\frac{6x(x^2+1)^3 - 6x(3x^2-1)(x^2+1)^2}{(x^2+1)^6}\right]

    Factor: . 2\cdot6x(x^2+1)^2\left[\frac{(x^2+1) - (3x^2 - 1)}{(x^2+1)^6}\right] \;= \;12x\,\frac{2-2x^2}{(x^2+1)^4}\;= \;24\,\frac{x-x^3}{(x^2+1)^4}

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    There were at least 10^{37} opportunities to make errors.
    . . I don't guarentee any of my results.

    Follow Math Help Forum on Facebook and Google+

  4. #4
    Senior Member
    Joined
    Jul 2006
    From
    Shabu City
    Posts
    381
    Quote Originally Posted by Soroban View Post
    [size=3]Hello, Amanda!

    This one of the more unpleasant functions to differentiate.
    I suggest using the Quotient Rule.
    . . Those negative exponents can be dangerous.

    It starts simply enough . . .

    f(x)\;=\;\tan^{-1}(x)

    f'(x)\;=\;\frac{1}{x^2+1}\;=\;(x^2+1)^{-1}

    f''(x)\;=\;-1(x^2+1)^{-1}\cdot2x \;=\;-2\,\frac{x}{x^2+1}
    i think its -(x^2+1)^{-2}\cdot2x? is it?
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Higher order derivatives
    Posted in the Differential Geometry Forum
    Replies: 2
    Last Post: September 29th 2010, 09:03 AM
  2. [SOLVED] Re-writing higher order spatial derivatives as lower order system
    Posted in the Differential Equations Forum
    Replies: 11
    Last Post: July 27th 2010, 09:56 AM
  3. Higher order derivatives
    Posted in the Calculus Forum
    Replies: 2
    Last Post: September 23rd 2009, 08:48 PM
  4. higher-order derivatives
    Posted in the Calculus Forum
    Replies: 3
    Last Post: August 8th 2009, 07:05 PM
  5. Higher Order Implicit Derivatives
    Posted in the Calculus Forum
    Replies: 0
    Last Post: February 20th 2007, 02:56 PM

Search Tags


/mathhelpforum @mathhelpforum