Use epsilon-delta proof to show that $\displaystyle \lim_{x\to 4} x^2 = 16$

So far, I have:

Let $\displaystyle \epsilon > 0$

We know that:

$\displaystyle |x^2 - 16| < \epsilon$

and

$\displaystyle |x - 4| < \delta$

Choosing $\displaystyle \delta$:

$\displaystyle |x^2 - 16| < \epsilon$

$\displaystyle |(x + 4)(x - 4)| < \epsilon$

$\displaystyle |x + 4||x - 4| < \epsilon$

From here, I'm having trouble remembering what to do.