1. f(x)= e^(2*pi*x)
2. f(x)= x^(2*pi*e)
3. f(x)= (e*pi)^(2x)
4. f(x)= pi^(e)^(2x)
thanks
Recall that $\displaystyle \frac{d}{dx}e^{x} = e^{x}$.
The first is going to be done by the chain rule:
1. $\displaystyle f(x)= e^{2 \pi x}$
$\displaystyle f'(x) = e^{2 \pi x} \cdot 2 \pi = 2 \pi e^{2 \pi x}$
Since $\displaystyle \pi$ and "e" are just constants, the second one is familiar to you already. It is just the power law:
$\displaystyle \frac{d}{dx}x^n = nx^{n-1}$
2. $\displaystyle f(x)= x^{2 \pi e}$
$\displaystyle f'(x) = (2 \pi e) x^{2 \pi e - 1}$
-Dan
Since $\displaystyle \pi$ and "e" are constants this is the derivative of a constant to a function:
$\displaystyle \frac{d}{dx}a^x = ln(a) \cdot a^x$
(We also need to use the chain rule.)
$\displaystyle f(x) = (e \pi)^{2x}$
$\displaystyle f'(x) = \left ( ln(e \pi) \cdot (e \pi)^{2x} \right ) \cdot 2$
$\displaystyle f'(x) = 2 \left ( ln(e) + ln( \pi ) \right ) (e \pi )^{2x}$ Using a property of logarithms.
$\displaystyle f'(x) = 2 \left ( 1 + ln( \pi ) \right ) (e \pi )^{2x}$
-Dan
We need some clarification here. Is your function:
$\displaystyle f(x) = \pi ^{ \left ( e^{2x} \right ) }$
or
$\displaystyle f(x) = \left ( \pi ^{e} \right )^{2x}$
For the first case, we need to use the chain rule a few times:
$\displaystyle f(x) = \pi ^{ \left ( e^{2x} \right ) }$
$\displaystyle f'(x) = \left ( ln( \pi ) \cdot \pi ^{ \left ( e^{2x} \right ) } \right ) \cdot \left ( e^{2x} \right ) \cdot (2)$
$\displaystyle f'(x) = 2 ln( \pi ) e^{2x} \cdot \pi ^{ \left ( e^{2x} \right ) }$
In the second case note that $\displaystyle \left ( \pi ^{e} \right )^{2x} = \pi ^{2ex}$, so
$\displaystyle f(x) = \left ( \pi ^{e} \right )^{2x} = \pi ^{2ex}$
$\displaystyle f'(x) = \left ( ln( \pi ) \cdot \pi ^{2ex} \right ) \cdot (2e)$
$\displaystyle f'(x) = 2e \cdot ln( \pi ) \cdot \pi ^{2ex}$
-Dan