for the function
$\displaystyle f(x) = \frac {x+5} {2x-4}$
find the vertical and horizontal asymptotes
I know what an asymptote is but I'm not sure how I'm suppose to find it....any help is appreciated!
$\displaystyle y = \frac {x+5} {2x-4}$
we can see that 2x-4=0 , ie x=2 makes the function undefined . Thus , it's a vertical asymtote .
Horizontal aymtotes occur when $\displaystyle y=\lim_{x\rightarrow\infty}f(x)$ is finite .
$\displaystyle y=\lim_{x\rightarrow\infty}\frac{\frac{x}{x}+\frac {5}{x}}{\frac{2x}{x}-\frac{4}{x}}$
y=?? will be the horizontal asymtote