Alright, so I've got a homework assignment that I've been working through and I've come across several problems that are tripping me up. If anyone could offer suggestions as to where I should start with these, it'd be greatly appreciated.

#1) Evaluate the following integral:

[xe^arctan(x) / (1+x^2)^(3/2)] dx

#2) Evaluate the following integrals of rational functions:

a) Integral of [1 / (4x^2+4x+1)] dx

b) Integral of [1 / (4x^2+4x+5)] dx

#3) I'm supposed to use the substitution t = tan(x/2) to convert the following integral into a rational function integral. (Put it in the lowest terms and then evaluate):

Integral of:

[1 / 1+sin(x)-cos(x)] dx

Alright, so as far as what I've tried thus far:

1) I didn't even know where to start...

2) I figured that partial fractions would be the way to go here, so I broke up the integrals as per standard procedure and began to integrate, but when I finished that train of thought, I ended up getting something way different than the few people I asked (too long to even bother posting here)...

3) Here, I was supposed to use a similar substitution as was used in a previous problem, but when I did, I ended up getting another weird answer, so I figured maybe some fresh eyes without any background info might be helpful to see something that I was missing...

Thanks again.

-B

P.S. - I'm not digging for free help here, I just wanted some pointers on what I can do to start these and actually end up with the correct answer...