
Originally Posted by
galactus
You could use trig sub.
$\displaystyle \int x^{3}\sqrt{x^{2}+1}dx$
Let $\displaystyle x=tan(t), \;\ dx=sec^{2}(t)dt$
Upon making the subs, we get:
$\displaystyle \int tan^{3}(t)sec^{3}(t)dt$
$\displaystyle \int tan^{2}(t)sec^{2}(t)(sec(t)tan(t)dt$
=$\displaystyle \int (sec^{2}(t)-1)sec^{2}(t)(sec(t)tan(t))dt$
Let $\displaystyle u=sec(t), \;\ du=sec(t)tan(t)dt$
$\displaystyle \int (u^{2}-1)u^{2}du$
$\displaystyle \frac{1}{5}u^{5}-\frac{1}{3}u^{3}$
Resub:
$\displaystyle \frac{1}{5}sec^{5}(t)-\frac{1}{3}sec^{3}(t)$
Resub from the beginning, $\displaystyle t=tan^{-1}(x)$
This gives:
$\displaystyle \frac{1}{5}(x^{2}+1)^{\frac{5}{2}}-\frac{1}{3}(x^{2}+1)^{\frac{3}{2}}+C$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
An easier way may be to let $\displaystyle u=x^{2}+1, \;\ du=2xdx, \;\ \frac{1}{2}du=dx$
Then we get:
$\displaystyle \frac{1}{2}\int \sqrt{u}(u-1)du=\frac{1}{2}\left[\int u^{\frac{3}{2}}-\int u^{\frac{1}{2}}\right]du$
Can you go from there?. This way is easier if the trig sub is scary.