Results 1 to 5 of 5

Thread: integrate-really difficult

  1. #1
    Newbie
    Joined
    Feb 2009
    From
    singapore
    Posts
    1

    integrate-really difficult




    Guys!!! please help me with this. it is quite unsolvable.
    Attached Thumbnails Attached Thumbnails integrate-really difficult-new-acdsee6-bmp-image.bmp  
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Member Abu-Khalil's Avatar
    Joined
    Oct 2008
    From
    Santiago
    Posts
    148
    $\displaystyle \int_\frac{\pi}{6}^\frac{\pi}{3}\log(x\tan x)dx=\left.x\log(x\tan x)\right|^\frac{\pi}{3}_\frac{\pi}{6}-\underbrace{\int_\frac{\pi}{6}^\frac{\pi}{3}\frac{ x}{x\tan x}(\tan x+x\sec^2 x)dx}_{I_1}$ and $\displaystyle I_1=\int_\frac{\pi}{6}^\frac{\pi}{3}1+x\sec^2 x\cot x dx$.

    Now let $\displaystyle u=\tan x \Rightarrow du=\sec^2 x dx$ then $\displaystyle \int_\frac{\pi}{6}^\frac{\pi}{3}x\sec^2 x\cot x dx=\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}\frac{\arct an u}{u}du=\left.\log u \arctan u\right|^{\sqrt{3}}_{\frac{1}{\sqrt{3}}}=\underbra ce{\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}\frac{\log u}{1+u^2}du}_{=0}.$

    For the last integral, see here http://www.mathhelpforum.com/math-he...lp-needed.html
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member Nacho's Avatar
    Joined
    Mar 2008
    From
    Santiago, Chile
    Posts
    135
    $\displaystyle
    \begin{gathered}
    \int {\ln \left( {x\tan x} \right)dx} = \int {\ln \left( x \right)dx + \int {\ln \left( {\tan x} \right)dx} } \hfill \\
    {\text{Integrating by part in both integrals}}{\text{, tanking }}u{\text{ the logarythm}} \hfill \\
    x\ln \left| x \right| - x + x\ln \left| x \right| + \underbrace {\int { - x \cdot \frac{1}
    {{\tan x}} \cdot \sec ^2 xdx} }_I \hfill \\
    \end{gathered}
    $

    $\displaystyle
    \begin{gathered}
    I = \int {\frac{{ - x}}
    {{\cos x\sin x}}dx\overbrace = ^{u = \cos x}\int {\frac{{\arccos \left( u \right)}}
    {{u\left( {1 - u^2 } \right)}}} } du \hfill \\
    \pi - \arccos \left( { - u} \right) = \arccos \left( u \right) \hfill \\
    \end{gathered}
    $

    $\displaystyle
    \begin{gathered}
    I = \int {\frac{{\pi - \arccos \left( { - u} \right)}}
    {{u\left( {1 - u^2 } \right)}}} du\overbrace = ^{ - u = z}\int {\frac{{\pi - \arccos \left( z \right)}}
    {{z\left( {1 - z^2 } \right)}}dz} \hfill \\
    I = \int {\frac{\pi }
    {{z\left( {1 - z^2 } \right)}}dz} - \underbrace {\int {\frac{{\arccos \left( z \right)}}
    {{z\left( {1 - z^2 } \right)}}dz} }_I \hfill \\
    \end{gathered}
    $

    $\displaystyle
    \begin{gathered}
    2I = \pi \int {\frac{1}
    {z} + \frac{z}
    {{1 - z^2 }}dz = \pi \ln \left| z \right| - \frac{\pi }
    {2}\int {\frac{{ - 2z}}
    {{1 - z^2 }}dz} } \hfill \\
    I = \frac{\pi }
    {2}\left\{ {\ln \left| z \right| - \ln \left| {1 - z^2 } \right|} \right\} + C \hfill \\
    \end{gathered}
    $

    Restoring and adding you have the answer
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Math Engineering Student
    Krizalid's Avatar
    Joined
    Mar 2007
    From
    Santiago, Chile
    Posts
    3,656
    Thanks
    14
    Quote Originally Posted by Abu-Khalil View Post

    $\displaystyle \int_\frac{\pi}{6}^\frac{\pi}{3}x\sec^2 x\cot x dx=\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}\frac{\arct an u}{u}du$
    I'll take it from here: in fact consider $\displaystyle \int_{\frac{1}{n}}^{n}{\frac{\arctan x}{x}\,dx},$ whereas by putting $\displaystyle x\to\frac1x$ this leads to $\displaystyle \int_{\frac{1}{n}}^{n}{\frac{1}{x}\arctan \left( \frac{1}{x} \right)\,dx},$ whereat by adding these (provided that for each $\displaystyle x\in(-\infty,0)\cup(0,\infty)$ is $\displaystyle \arctan x+\arctan \frac{1}{x}=\frac{\pi }{2}$) we get $\displaystyle \frac{\pi }{2}\int_{\frac{1}{n}}^{n}{\frac{dx}{x}}=\pi \ln n$ and the integral equals $\displaystyle \frac{\pi }{2}\ln n$ which holds for all $\displaystyle n>0.$

    Quote Originally Posted by Nacho View Post

    $\displaystyle
    \pi - \arccos \left( { - u} \right) = \arccos \left( u \right)
    $
    Alas, this statement does not hold for all $\displaystyle u,$ besides, by differentiating your result, we don't get the integrand. (Actually, there's no primitive in terms of elementary functions.)
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member
    Joined
    Feb 2009
    Posts
    36

    solution

    I=integrate{ln(xtanx) dx}[lim pi/6 to pi/3]

    I=integrate{ln((pi/2-x)cotx) dx}[lim pi/6 to pi/3]

    so,adding,2I=integrate{ln(x*(pi/2-x)) dx)[lim pi/6 to pi/3]

    2I=integrate {lnx}[lim pi/6 to pi/3] + integrate {ln(pi/2-x)}[lim pi/6 to pi/3]

    the rest is easy.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. help w/ difficult IVP
    Posted in the Differential Equations Forum
    Replies: 3
    Last Post: Apr 3rd 2010, 05:44 PM
  2. difficult(for me) DE
    Posted in the Differential Equations Forum
    Replies: 3
    Last Post: Apr 3rd 2010, 05:49 AM
  3. PDE - Difficult
    Posted in the Differential Equations Forum
    Replies: 1
    Last Post: May 14th 2009, 10:31 PM
  4. Difficult Dif EQ
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Nov 1st 2007, 09:05 AM
  5. not to difficult
    Posted in the Number Theory Forum
    Replies: 3
    Last Post: Nov 18th 2006, 08:51 PM

Search Tags


/mathhelpforum @mathhelpforum