Prove:
If 0 < a < b and 0 < c < d, then ac < bd
I know that I need to use the order axioms. However, the order axioms I have are not helping me. I am assuming that I need to be using some type of corrollary to one of the order axioms...
Prove:
If 0 < a < b and 0 < c < d, then ac < bd
I know that I need to use the order axioms. However, the order axioms I have are not helping me. I am assuming that I need to be using some type of corrollary to one of the order axioms...