Hello, acevipa!
I assume you made a sketch . . .
In what ratio does the xaxis divide the area of the region
bounded by the parabolas: .$\displaystyle y\:=\:4xx^2\,\text{ and }\,y\:=\:x^2x$ Code:

*  *


*  * *
 *:::::*
* *:::::::*
* :::::::*
    *:::*  *    
 *

* *

The parabola intersect when: .$\displaystyle x^2x \:=\:4xx^2 \quad\Rightarrow\quad x \:=\:0,\:\tfrac{5}{2}$
Find the total area between the parabolas: .$\displaystyle A_{\text{total}} \;=\;\int^{\frac{5}{2}}_0\bigg[(4xx^2)  (x^2x)\bigg]\,dx$
Find the area below the xaxis: .$\displaystyle A_{\text{below}} \;=\;\int^1_0\bigg[x^2x\bigg]\,dx$
Find the area above the xaxis: .$\displaystyle A_{\text{above}} \;=\;A_{\text{total}}  A_{\text{below}}$
Finally, form the ratio: .$\displaystyle \frac{A_{\text{above}}}{A_{\text{below}}} $