1. ## Derivatives

How do you do these two derivatives? (Work below.)

1. $y = e^{(1+lnx)}$

2. $y = x^{lnx}$

------------
------------
1. $y = e^{(1+lnx)}$

$y' = \frac{1}{x}(e^{(1+lnx)})$

Actual answer: $y' = e$

--------------------

2. $y = x^{lnx}$

$y' = \frac{1}{x}(lnx)(x^{lnx})$

$y' = \frac{2 (lnx)( x^{lnx})}{x}$

2. Originally Posted by Cursed
How do you do these two derivatives? (Work below.)

1. $y = e^{(1+lnx)}$

2. $y = x^{lnx}$

------------
------------
1. $y = e^{(1+lnx)}$

$y' = \frac{1}{x}(e^{(1+lnx)})$

Actual answer: $y' = e$

--------------------
note that this is the answer you have!

recall, $e^{\ln x} = x$. you can use this fact to simplify your answer to get what you have stated.

or you could have done it from the beginning: $e^{1 + \ln x} = e \cdot e^{\ln x} = ex$ ...

2. $y = x^{lnx}$

$y' = \frac{1}{x}(lnx)(x^{lnx})$

$y' = \frac{2 (lnx)( x^{lnx})}{x}$
hint: note that $x^{\ln x} = e^{\ln x^{\ln x}} = e^{\ln x \cdot \ln x} = e^{(\ln x)^2}$

3. Hello, Cursed!

The first one is a trick question . . .

$1)\;\;y \:=\: e^{1+\ln x}$

We have: . $y \;=\;e^{1+\ln x} \;=\;e^1\cdot e^{\ln x} \;=\;e\cdot x$

Therefore: . $y \:=\:ex \quad\Rightarrow\quad y\:\!' \:=\:e$

$2)\;\;y \:=\: x^{\ln x}$

This requires Logarithmic Differentiation.

Take logs: . $\ln(y) \;=\;\ln\left(x^{\ln x}\right) \;=\;\ln x\cdot\ln x \quad\Rightarrow\quad \ln(y) \;=\;\left[\ln x\right]^2$

Differentiate implicitly: . $\frac{1}{y}\cdot y\:\!' \;=\;2\cdot\ln x \cdot\frac{1}{x} \quad\Rightarrow\quad \frac{y\:\!'}{y} \;=\;\frac{2\ln x}{x}$

Then: . $y' \;=\;y\cdot\frac{2\ln x}{x} \;=\;\frac{2\,x^{\ln x}\ln x}{x}$