Hello, bavery25!
Did you make a sketch?
The region bounded by $\displaystyle \begin{Bmatrix}y\:=\:x^3 \\y\:=\:0 \\ x\:=\:3\end{Bmatrix}$ is rotated about the line $\displaystyle x=-1$
What is the volume of the resulting solid?Code:| | * | : | * : | *| : | *::| : | *:::::| - - : - - * - - - - + - - -1 | 3 |
Formula: . $\displaystyle V \;=\;2\pi\int^b_a\text{(radius)(height)}\,dx$
So we have: .$\displaystyle V \;=\;2\pi\int^3_0(x+1)(x^3)\,dx$