Let http://ta2.maths.ed.ac.uk:8080/maple...jlpkddphma.gif.

(a)Evaluate the integral by making a change of variables using hyperbolic functions. Hence evaluate http://ta2.maths.ed.ac.uk:8080/maple...baccpgmjpm.gif

(b)Express http://ta2.maths.ed.ac.uk:8080/maple...baccpgmjpm.gif in terms of exponentials. Solve for http://ta2.maths.ed.ac.uk:8080/maple...flimndmink.gif and hence express http://ta2.maths.ed.ac.uk:8080/maple...nkpogecbno.gif as http://ta2.maths.ed.ac.uk:8080/maple...hmahgcieil.gif.