# Thread: integrals differening by konstant

1. ## integrals differening by konstant

i think thsi is easy but cant think of the answer can some1 help me out
thanx
edgar

Suppose f is continuous on a domain D. Prove that any two primitives
of f (if they exist) differ by a constant.

2. Originally Posted by edgar davids
i think thsi is easy but cant think of the answer can some1 help me out
thanx
edgar

Suppose f is continuous on a domain D. Prove that any two primitives
of f (if they exist) differ by a constant.
Primitive as in "anti-derivative"?
---
Theorem: If a function $f$ is differenciable with the property that $f'(x)=0$ for all points then, $f(x)=C$ for some real number $C$.

Proof: Let $a,b$ and be be points $a. Then, the closed interval $[a,b]$ is continous (because differenciability implies continuity). And the open interval $(a,b)$ is differenciable because that is the property of the function. This satisfies Lagrange's Mean Value theorem. There exists a point $c\in (a,b)$ such as,
$f'(c)=\frac{f(b)-f(a)}{b-a}$
But, $f'(c)=0$
Thus,
$\frac{f(b)-f(a)}{b-a}=0$
Thus,
$f(b)-f(a)=0$ thus, $f(a)=f(b)$. Which means that the evaluation of the function is invariant, i.e. it is a constant function. Q.E.D.

Corrolarry
Given a function $f$ on some interval. If $F$ and $G$ are primitives, that is, $F'=G'=f$ for all points in the open interval. Then, $F'-G'=(F-G)'=0$, thus, $F-G$ is derivative zero throughtout the interval. By the theorem that means that, $F-G=C$ for some constanct function $C$. Thus, $F=G+C$. Q.E.D.