$\displaystyle z^{i} \ \ is \ \ single-valued \ \ on \ \ set \ \ D=C - \{x+iy : x\leq0, y=0 \} $

and another problem

show this function has three branch points :

$\displaystyle f(z)=(z^{2}-z-2)^{\frac{1}{3}} $

Printable View

- Feb 1st 2009, 04:28 AMsilversandbranch points problems
$\displaystyle z^{i} \ \ is \ \ single-valued \ \ on \ \ set \ \ D=C - \{x+iy : x\leq0, y=0 \} $

and another problem

show this function has three branch points :

$\displaystyle f(z)=(z^{2}-z-2)^{\frac{1}{3}} $