find the following indefinite integral (using u substitution):

$\displaystyle \int x \sqrt[3]{x+1} dx$

evaluate the following definite integrals using the Fundamental Theorem of the Calculus (u sub involved):

$\displaystyle \int_{0}^{\frac{\pi}{4}} (1 + tan^2 x)sec^2 x dx$

$\displaystyle \int_{0}^{2|b|} \frac{x}{\sqrt{x^2 + b^2}} dx$