Results 1 to 5 of 5

Math Help - Multi variable problem.

  1. #1
    Junior Member
    Joined
    Jan 2009
    Posts
    57

    Multi variable problem.

    Hi,

    I have just completed a set of problems using the chain rule, and have come across one I am very confused about.

    Given K=1/2mvv
    (v squared)
    m = 10grams
    v = 30cm/second
    accel = 5cm/s/s

    what rate is K changing. I don't know how to go about applying the chain rule to the function. I have tried differentiating with respect to m, then with respect to v and multiplying by vv (v squared) and m respectively.

    The answer is 1500. I can't figure out the middle step. I am guessing that accel of 5m/s/s is not required. There is no accel in the formula.

    Thanks
    Regards
    Craig.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member
    Joined
    Dec 2008
    From
    Scotland
    Posts
    901
    Quote Originally Posted by craigmain View Post
    Hi,

    I have just completed a set of problems using the chain rule, and have come across one I am very confused about.

    Given K=1/2mvv
    (v squared)
    m = 10grams
    v = 30cm/second
    accel = 5cm/s/s

    what rate is K changing. I don't know how to go about applying the chain rule to the function. I have tried differentiating with respect to m, then with respect to v and multiplying by vv (v squared) and m respectively.

    The answer is 1500. I can't figure out the middle step. I am guessing that accel of 5m/s/s is not required. There is no accel in the formula.

    Thanks
    Regards
    Craig.
    You are asked to find the rate of change of K with time, so you must differentiate with respect to time!

     \frac{dK}{dt} = \frac{d}{dt} (\frac{1}{2}mv^2 )

    Take the constants out of the integration:

     \frac{dK}{dt} = \frac{1}{2}m\frac{d}{dt} (v^2)

    You need to differentiate implicitly here!

     \frac{dK}{dt} = \frac{1}{2}m (2v \times \frac{dv}{dt})

    You should realise that dv/dt is the rate of change of velocity with time... also known as... acceleration!

    Hence:

     \frac{dK}{dt} = \frac{1}{2}m (2v \times a)



     \frac{dK}{dt} = mva
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Jan 2009
    Posts
    57

    Thanks, still confused, but not because of your explanation.

    Hi,

    I appreciate your answer very much. I still have some reading to do, as I still don't understand why m is considered a constant, and also why once differentiating v squared you still need to multiply by dv/dt.

    I need to keep reading. I am not understanding the various rates of change and how they relate to one another in the same equation.
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member
    Joined
    Dec 2008
    From
    Scotland
    Posts
    901
    Quote Originally Posted by craigmain View Post
    Hi,

    I appreciate your answer very much. I still have some reading to do, as I still don't understand why m is considered a constant, and also why once differentiating v squared you still need to multiply by dv/dt.

    I need to keep reading. I am not understanding the various rates of change and how they relate to one another in the same equation.
    The mass is considered constant, because it is constant! The mass never changes. Ever. Throughout your entire problem, only 2 things ever change... K, and the velocity. Hence these are the only two variables which have derivatives in the problem.

    You were differentiating with respect to time. That means that only variables which are functions of time can be differentiated. Only things that change with time can be differenatited wrt time.

    The mass doesn't change with respect to time. If you draw a mass/time graph, it will be a vertical/horizontal line. Constant.

    Velocity is a function of time. V = d/t.

    K is a function of V, hence it is a function of time, since v is a function of time.

    But nothing else is a function of time in this problem, they can be considered constants.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member
    Joined
    Jan 2009
    Posts
    57

    Thanks

    Thanks,
    I understand the problem now.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Multi-variable pdf.
    Posted in the Advanced Statistics Forum
    Replies: 3
    Last Post: December 3rd 2011, 01:31 PM
  2. Multi-Variable Limit Problem
    Posted in the Calculus Forum
    Replies: 3
    Last Post: August 27th 2011, 03:48 PM
  3. Multi-variable limit
    Posted in the Calculus Forum
    Replies: 4
    Last Post: March 19th 2011, 09:35 AM
  4. Please help on the multi variable problem
    Posted in the Calculus Forum
    Replies: 1
    Last Post: February 9th 2010, 10:00 PM
  5. Multi variable integration?
    Posted in the Calculus Forum
    Replies: 7
    Last Post: December 30th 2009, 09:20 PM

Search Tags


/mathhelpforum @mathhelpforum