integral of arcsin(x)/x^2
I know integration by parts must be used but for some reason I can never get it to reduce enough
$\displaystyle v' = \frac{1}{x^2} $
$\displaystyle v = -\frac{1}{x} $
$\displaystyle u = \arcsin(x) $
$\displaystyle u' = \frac{1}{\sqrt{1-x^2}} $
$\displaystyle \int v'u = vu - \int u'v $
$\displaystyle = \frac{-arcsin(x)}{x} - \int \frac{-1}{x \sqrt{1-x^2}}dx $
$\displaystyle = \frac{-arcsin(x)}{x} + \int \frac{1}{x \sqrt{1-x^2}}dx $