# Thread: Real Analysis - Sequences #2

1. ## Real Analysis - Sequences #2

Hey, I have been having trouble ever since I took part 1 of this class. So, here is question 2:

Assume that (fn) converges uniformly to f on A and that each fn is uniformly continuous on A. Prove that f is uniformly continuous on A.

Any help would be greatly appreciated. Thanks.

2. Originally Posted by ajj86
Hey, I have been having trouble ever since I took part 1 of this class. So, here is question 2:

Assume that (fn) converges uniformly to f on A and that each fn is uniformly continuous on A. Prove that f is uniformly continuous on A.

Any help would be greatly appreciated. Thanks.
Here is the idea of the proof.

Since $f_n \to f$ uniformly there exits an $N \in \mathbb{N}$ such that for $n > N$ $|f_n-f|< \frac{\epsilon}{3}$ Now fix $M > N$

Since each $f_n$ is uniformly continous there exists a delta such that $|x-y|< \delta \implies |f_M(x)-f_M(y)|< \frac{\epsilon}{3}$

Now if $|x-y|<\delta$ then

$|f(x)-f(y)|= |f(x)-f_M(x)+f_M(x)-f_M(y)+f_M(y)-f(y)|$

$<|f(x)-f_M(x)|+|f_M(x)-f_M(y)|+|f_M(y)-f(y)|< \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsil on}{3}=\epsilon$