2. Originally Posted by m777
Q1. find:

$
\lim_{x \to \infty} [\sqrt{x^2+a x} -x]
$

rewrite as:

$
\lim_{x \to \infty} [x \sqrt{1+a/x} -x]
$

or:

$
\lim_{x \to \infty} x[ \sqrt{1+a/x} -1]
$

Which may be rewritten:

$
\lim_{x \to \infty} \frac{ \sqrt{1+a/x} -1}{1/x}
$

and now L'Hopitals rule may be applied to give:

$
\lim_{x \to \infty} \frac{ \sqrt{1+a/x} -1}{1/x}=
\lim_{x \to \infty} \frac{ (1/2)(1+a/x)^{-1/2}(-a/x^2)}{-1/x^2}=$
$\lim_{x \to \infty} (1+a/x)^{-1/2}(a/2)=a/2
$

RonL

3. Well for Qn 2 its quite stright forward

Just change all the x into (1)

then you will get

= 2.(1)²

= 2. (1) <--- (1)² = 1 hence it is = 2

4. [QUOTE=ThePerfectHacker;25185]Question 1, Use the standard rationalization trick,

The function,
$f(x)=\sqrt{x^2+ax}-x$
And,
$g(x)=\frac{\sqrt{x^2+ax}-x}{1}\cdot \frac{\sqrt{x^2+ax}+x}{\sqrt{x^2+ax}+x}$
Agree for sufficiently large $x$, thus the limits are the same.

Working with the second function we find,
$\frac{x^2+ax-x^2}{\sqrt{x^2+ax}+x}$
Thus,
$\frac{ax}{\sqrt{x^2+ax}-x}$
For suffiently large, i.e., $x>0$ we factor,
$\frac{ax}{x\sqrt{1+a/x}+x}$
Factor again,
$\frac{ax}{x(\sqrt{1+a/x}+1)}$
Thus,
$\frac{a}{\sqrt{1+a/x}+1}$
Now,
$\lim_{x\to \infty}=\sqrt{1+a/x}=1$ limit compositions rule,
Thus, by limit composition rule again,
$\frac{a}{\sqrt{1+a/x}+1}\to \frac{a}{1+1}=a/2$

5. Hello, m777!

A slightly different approach to #1 . . .

$1)\;\lim_{x\to\infty}\left(\sqrt{x^2+ax} - x\right)$

Multiply top and bottom by $(\sqrt{x^2+ax} + x)$

. . $\frac{\sqrt{x^2+ax} - x}{1}\cdot\frac{\sqrt{x^2+ax} + x}{\sqrt{x^2+ax} + x} \;=\;\frac{(x^2 + ax) - x^2}{\sqrt{x^2+ax} + x} \;=\;\frac{ax}{\sqrt{x^2+ax} + x}$

Divide top and bottom by $x:\;\;\frac{\frac{ax}{x}}{\frac{\sqrt{x^2+ax}}{x} + \frac{x}{x}} \;=\;\frac{a}{\sqrt{\frac{x^2}{x^2}+\frac{a^2}{x^2 }} + 1} \;=\;\frac{a}{\sqrt{1 + \frac{a^2}{x^2}} + 1}$

Take the limit: . $\lim_{x\to\infty}\frac{a}{\sqrt{1 + \frac{a^2}{x^2}} + 1} \;=\;\frac{a}{\sqrt{1 + 0} + 1} \:=\:\frac{a}{2}$

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

$3)\;f(x)\:=\:\left\{\begin{array}{ccc}\frac{x^2-a^2}{x-a} & 0 \leq x < a \\ a & x = a \\ 2a & x > a\end{array} \right\}$

Did you make a sketch?
Code:
            |
|     (a,2a)
|       o * * * * * *
|     *
|   *
| *     *(a,a)
*
|
--------+-------+--------------- -
|       a

Rather obvious that it's discontinuous at $x = a$, isn't it?

6. Originally Posted by Soroban
Hello, m777!

A slightly different approach to #1 . . .

Multiply top and bottom by $(\sqrt{x^2+ax} + x)$

. . $\frac{\sqrt{x^2+ax} - x}{1}\cdot\frac{\sqrt{x^2+ax} + x}{\sqrt{x^2+ax} + x} \;=\;\frac{(x^2 + ax) - x^2}{\sqrt{x^2+ax} + x} \;=\;\frac{ax}{\sqrt{x^2+ax} + x}$

Divide top and bottom by $x:\;\;\frac{\frac{ax}{x}}{\frac{\sqrt{x^2+ax}}{x} + \frac{x}{x}} \;=\;\frac{a}{\sqrt{\frac{x^2}{x^2}+\frac{a^2}{x^2 }} + 1} \;=\;\frac{a}{\sqrt{1 + \frac{a^2}{x^2}} + 1}$

Take the limit: . $\lim_{x\to\infty}\frac{a}{\sqrt{1 + \frac{a^2}{x^2}} + 1} \;=\;\frac{a}{\sqrt{1 + 0} + 1} \:=\:\frac{a}{2}$

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Did you make a sketch?
Code:
            |
|     (a,2a)
|       o * * * * * *
|     *
|   *
| *     *(a,a)
*
|
--------+-------+--------------- -
|       a
Rather obvious that it's discontinuous at $x = a$, isn't it?
Unless a=0.

RonL

7. Is a function that is only defined for a single point continuous?

-Dan

8. Originally Posted by topsquark
Is a function that is only defined for a single point continuous?
No! by definition,
$\lim_{x\to c}f(x)=f(c)$
Now in order to take a limit we need to find a $\delta>0$ such that,
$|x-c|<\delta$ is in the domain, that means,
$c-\delta
Is some open interval.
That means the function needs to be definied on some open interval about $x=c$ which it fails heir.

Dear,
soroban.
In question no three i make a sketch of it.yes it is discontinuous at x=a.
many best wishes for you
from
m777