Hey there. You forgot to use the chain rule for all your derivatives so they will all be off.
d/dx (2x+1)^4 = 4(2x+1)^3 * 2
I've got a question that asks me to take the 4th derivitive of (2x+1)^4 ~ The problem I come across is once it becomes 24(2x+1)^0 I don't understand what the value is...
I'm not sure if I'm correct on this but (2x+1)^4 differentiated is:
4(2x+1)^3
12(2x+1)^2
24(2x+1)^1
24(2x+1)^0
Can anyone tell me if I did something wrong, and then answer my question? >.O
Alright, someone brought the Chain Rule up to me earlier when I asked also
So, I thought that worked but once I take the first derivitive I became confused because 4(2x+1)^3 *2 when differentiated again for the second derivitive would get rid of the *2 wouldn't it? Or am I completely wrong?
Alright, that helps a lot. So if I simplify it essentially keeps me from any confusion about what stays and what goes, because the coefficient is all that changes due to the chain rule. Thank you, that really does help.
If only I'd found this place before the test I had today, I might have done a little better on it. (We're on integration, confusion about the chain rule should have been repaired long ago)