Originally Posted by

**Jenberl** Hello.

I do not understand how:

$\displaystyle ln|\frac{\infty-2}{\infty+2}|$ is equal to $\displaystyle ln(1)$?

Does $\displaystyle ln(\infty)$ always = $\displaystyle ln(1)$?

Thank you,

Jen

I am so thankful for MathMan's post on how to use LaTeX!

*I apologize...I forgot to include the context I'm asking this for...

I have an answer for:

$\displaystyle \int\frac{1}{z^2-4}dz, (10<z<\infty)$

= $\displaystyle \frac{1}{4}ln|\frac{z-2}{z+2}|$ with 10<z<$\displaystyle \infty$

So,

$\displaystyle \frac{1}{4}ln|\frac{\infty-2}{\infty+2}|-\frac{1}{4}ln(\frac{2}{3})$

should equal:

$\displaystyle -\frac{1}{4}ln(\frac{2}{3}$): converges to .1014