Results 1 to 2 of 2

Thread: The use of double and surface integrals: two problems

  1. #1
    Newbie LaraSoft's Avatar
    Joined
    Jan 2009
    Posts
    4

    The use of double and surface integrals: two problems

    Hello, boys , help "blonde" solve two problems on the double, triple and surface integrals, please.

    #1. Find the center's coordinates of the gravity of a homogeneous surface:

    $\displaystyle Z = \sqrt {a^2 - x^2 - y^2 } {\text{ }}\left( {x \geqslant 0,{\text{ }}y \geqslant 0,{\text{ }}x + y \leqslant a} \right).$

    #2. Calculate the surface integral of the first kind of surface $\displaystyle S$,

    $\displaystyle \iint\limits_S {\left( {5x - 8y - z} \right)d\sigma ,}{\text{ }}P:{\text{ }}2x - 3y + z = 6.$

    where $\displaystyle S$ - part of the plane $\displaystyle P$, which cut coordinates planes.

    How should I start to solve these problems? Do I need to change the coordinates in the first problem?
    Which a figure is a projection $\displaystyle S$ on the plane XOY?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member DeMath's Avatar
    Joined
    Nov 2008
    From
    Moscow
    Posts
    474
    Thanks
    5
    Quote Originally Posted by LaraSoft View Post
    #2. Calculate the surface integral of the first kind of surface $\displaystyle S$,

    $\displaystyle \iint\limits_S {\left( {5x - 8y - z} \right)d\sigma ,}{\text{ }}P:{\text{ }}2x - 3y + z = 6.$

    where $\displaystyle S$ - part of the plane $\displaystyle P$, which cut coordinates planes.

    Which a figure is a projection $\displaystyle S$ on the plane XOY?
    The projection of $\displaystyle S$ on the plane $\displaystyle XOY$ is a triangle $\displaystyle D$: $\displaystyle {\text{ }}x > 0,{\text{ }}y < 0,{\text{ }}2x - 3y > 6$ (the fourth quadrant).

    We need use this formula to calculate your surface integral:

    $\displaystyle \iint\limits_S {f\left( {x,y,z} \right)}d\sigma = \iint\limits_D {f\left( {x,y,z\left( {x,y} \right)} \right)\sqrt {1 + {{\left( {\frac{{dz}}{{dx}}} \right)}^2} + {{\left( {\frac{{dz}}{{dy}}} \right)}^2}} dxdy}.$

    $\displaystyle P:{\text{ }}2x - 3y + z = 6{\text{ }} \Leftrightarrow z = 6 - 2x + 3y$

    $\displaystyle {\left( {\frac{{dz}}{{dx}}} \right)^2} = {\left( {\frac{d}{{dx}}\left( {6 - 2x + 3y} \right)} \right)^2} = 4,{\text{ }}{\left( {\frac{{dz}}{{dy}}} \right)^2} = {\left( {\frac{d}{{dy}}\left( {6 - 2x + 3y} \right)} \right)^2} = 9$

    So $\displaystyle \sqrt {1 + {{\left( {\frac{{dz}}{{dx}}} \right)}^2} + {{\left( {\frac{{dz}}{{dy}}} \right)}^2}} = \sqrt {1 + 4 + 9} = \sqrt {14}$

    and $\displaystyle f\left( {x,y,z\left( {x,y} \right)} \right) = 5x - 8y - \left( {6 - 2x + 3y} \right) = 7x - 11y - 6$.

    Finally, we have

    $\displaystyle D:{\text{ }}x > 0,{\text{ }}y < 0,{\text{ }}2x - 3y > 6.$

    $\displaystyle \iint\limits_S {\left( {5x - 8y - z} \right)d\sigma } = \sqrt {14} \iint\limits_D {\left( {7x - 11y - 6} \right)}dxdy = $

    $\displaystyle = \sqrt {14} \int\limits_0^3 {dx} \int\limits_{\frac{2}
    {3}x - 2}^0 {\left( {7x - 11y - 6} \right)dy} = \frac{{10\sqrt {14} }}
    {9}\int\limits_0^3 {\left( {9 + 3x - 2{x^2}} \right)dx} = 25\sqrt {14} .$
    Last edited by DeMath; Jan 10th 2009 at 04:18 AM.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Surface area double integrals
    Posted in the Calculus Forum
    Replies: 6
    Last Post: Feb 25th 2011, 11:31 AM
  2. Problems with double integrals
    Posted in the Calculus Forum
    Replies: 2
    Last Post: Nov 12th 2010, 06:57 AM
  3. Replies: 1
    Last Post: Dec 6th 2009, 07:43 PM
  4. Replies: 1
    Last Post: Apr 30th 2009, 01:34 AM
  5. surface area ( double integral)
    Posted in the Calculus Forum
    Replies: 1
    Last Post: Aug 14th 2007, 03:50 PM

Search Tags


/mathhelpforum @mathhelpforum