f(x)=1/(x(9x^2-4)^(1/2))

Please show me your steps.

Printable View

- Dec 3rd 2008, 06:15 PMHMVEvaluate this inverse trig integral PLZZ!!!?
f(x)=1/(x(9x^2-4)^(1/2))

Please show me your steps. - Dec 3rd 2008, 07:25 PMMathstud28
You have $\displaystyle \int\frac{dx}{x\sqrt{9x^2-4}}$

Instead of making a trig sub try using a reciporcal substitution first. Let $\displaystyle x=\frac{1}{\varphi}$, so our integral becomes

$\displaystyle \begin{aligned}\int\frac{dx}{x\sqrt{9x^2-4}}&\stackrel{x=\frac{1}{\varphi}}{\longmapsto}\in t\frac{\frac{-1}{\varphi^2}}{\frac{1}{\varphi}\sqrt{\frac{9}{\va rphi^2}-4}}\\

&=-\int\frac{d\varphi}{\sqrt{9-4\varphi^2}}\end{aligned}$

Now this is a much more common case of letting $\displaystyle 2\varphi=3\sin(\phi)$

See how that goes.

You could also have in the initial step let either $\displaystyle 3x=2\sec(\phi)$ or $\displaystyle 3x=2\cosh(\phi)$