Hi there.

I'm stuck solving the following problem, as I'm not sure how to find the values of 'B'. I gather I need to use the original DE, but I'm lost as to how. Can someone please help me out?

Any help would be greatly appreciated.

--------------------------------------------------------------------------

Find $\displaystyle V(t)$, when: $\displaystyle k = 0$, and also

$\displaystyle k != 0$.

initial conditions are: V(0) = 0 and V'(0) = 0

$\displaystyle (d^2V/dt^2) + 2 (dV/dt) + V = Vo ( exp(-kt) + 7ksin(t) )$

--------------------------------------------------------------------------

This is what I've got so far:

$\displaystyle V'' + 2V' + V = 0$

$\displaystyle (m+1)(m+1)$

$\displaystyle m1 = m2 = -1$

so homogenous eqn is:

$\displaystyle u = A1.exp(-x) + A2.x.exp(-x)$

and non-homog. one is:

$\displaystyle y = B1.exp(-kt) + B2.sin(t) + B3.cos(t)$