1. ## improper integral

how to evaluate ?
thankyou!

2. Hello,
Originally Posted by iwonder
how to evaluate ?
thankyou!
It's a common technique
$\displaystyle I=\int_{-\infty}^\infty e^{-3x^2} ~ dx$

Hence $\displaystyle I^2=\left(\int_{-\infty}^\infty e^{-3x^2} ~ dx\right) \cdot \left(\int_{-\infty}^\infty e^{-3y^2} ~ dy\right)$

$\displaystyle I^2=\int_{y=-\infty}^\infty \int_{x=-\infty}^\infty e^{-3x^2} \cdot e^{-3y^2} ~ dx ~ dy$

$\displaystyle I^2=\iint_{\mathbb{R}^2} e^{-3(x^2+y^2)} ~ dx ~ dy$

And you're back to a previous integral

3. and i got the answer for this is pi/3
is not equal to
plz exaplin

4. Originally Posted by iwonder

and i got the answer for this is pi/3
is not equal to
plz exaplin
It's $\displaystyle I^2$, so take the square root !

$\displaystyle I^2= \frac \pi 3 \implies I= \sqrt{\frac \pi 3}$ (and not -, since the integrand is always positive, its integral is positive)

5. Originally Posted by iwonder
how to evaluate ?
thankyou!
If you know the $\displaystyle \Gamma$ function the solution is very simple.

Noting that the function is even, we have
$\displaystyle \int\limits_{-\infty}^{\infty}\mathrm{e}^{-3x^{2}}dx\stackrel{y\to\sqrt{3}x}{=}\frac{2\sqrt{3 }}{3}\int\limits_{0}^{\infty}\mathrm{e}^{-y^{2}}dy$
..................$\displaystyle \stackrel{z\to y^{2}}{=}\frac{\sqrt{3}}{3}\int\limits_{0}^{\infty }z^{-1/2}\mathrm{e}^{-z}dz$
....................$\displaystyle =\frac{\sqrt{3}}{3}\Gamma(1/2)$
....................$\displaystyle =\frac{\sqrt{3\pi}}{3}.$

Also see Gamma function - Wikipedia, the free encyclopedia