I need to find the critical numbers for the following function..
f(x) = x^(2) e^(3x)
and the derivative is..
f'(x) = 2xe^(3x) + 3x^(2)e(3x)
Solve the derivative for zero...remembering that $\displaystyle f(x)\cdot{g(x)}=0\Rightarrow{g(x)=0\vee{f(x)=0}}$ and remember that $\displaystyle e^x\ne{0}\quad\forall{x\in\mathbb{R}}$