$\displaystyle \|f\|_{1}=\int_{0}^{1}{|f|} \ \ on \ \ C[0,1] $

uniform norm: $\displaystyle \|f\|_{\infty}=\sup \{|f(x)| : x\in [0,1] \} $

i think this is obvious:

$\displaystyle \|f\|_{1}\leq\|f\|_{\infty} $

but i cant find a positive real number a, $\displaystyle a\|f\|_{\infty}\leq\|f\|_{1} $