Results 1 to 3 of 3

Math Help - Help! A call to all those optimization whizzes.

  1. #1
    Newbie
    Joined
    Oct 2008
    Posts
    1

    Help! A call to all those optimization whizzes.

    A rectangular swimming pool is to be built with an area of 1800 square feet. The owner wants 5-foot wide decks along either side and 10-foot wide decks at the two ends. Find the dimensions of the smallest piece of property on which the pool can be built satisfying these conditions.

    I don't want to say all the ways i've tried to solve this thing for fear it'll get everyone stuck on the wrong train of thought. But be assured I've tried every way I can think of to get this problem in terms of x and solve for the minimum area of the pool, aaand i can't seem to get anything to work. A whole lot of gratitude and a lot of props to whoever can solve this.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Aug 2007
    From
    USA
    Posts
    3,110
    Thanks
    2
    Kali, Kali... How can we help if you show no work? Bad call.

    Rule #1 - Name stuff

    x = length of pool sides
    y = length of pool ends

    It's rectangular, so both ends and both sides arr the same, right?

    Now Translate!

    "A rectangular swimming pool is to be built with an area of 1800 square feet"

    x*y = 1800 - Done!

    "The owner wants 5-foot wide decks along either side "

    5 + y + 5 = 10 + y = length of property ends

    "10-foot wide decks at the two ends"

    10 + x + 10 = x + 20 = length of property sides

    Note: If you have not yet created a drawing to demonstrate this, please do so now. You must be convinced that the measurements are correct. If it should be y + 20 and x + 10, we're barking up the wrong tree.

    "Find the dimensions of the smallest piece of property "

    The area of the property is A(x,y) = (10+y)(x+20)

    As the two variables are a little irritating, perhaps, we have a provision to get rid of one of them. Remember this x*y = 1800? Solve for y.

    y = 1800/x

    Substitute into the Area function, giving A(x) = (10 + 1800/x)(x+20)

    Where does that leave us?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,676
    Thanks
    608
    Hello, Kali!

    A rectangular swimming pool is to be built with an area of 1800 ft².
    The owner wants 5-ft wide decks along either side and 10-ft wide decks at the two ends.
    Find the dimensions of the smallest piece of property on which this pool can be built.
    Code:
          :  10 : - - - L - - - :  10 : 
        - * - - * - - - - - - - * - - *  -
        5 |                           |  :
        - *     * - - - - - - - *     *  :
        : |     |               |     |  :
        : |     |               |     |  :
        W |     |             W |     | W+10
        : |     |               |     |  :
        : |     |       L       |     |  :
        - *     * - - - - - - - *     *  : 
        5 |                           |  :
        - * - - * - - - - - - - * - - *  -
          : - - - - - L+20  - - - - - :

    The dimensions of the pool are L by W.

    The area of the pool is 1800 ft²: . LW \:=\:1800 \quad\Rightarrow\quad W \:=\:\tfrac{1800}{L} .[1]

    The total area has dimensions L+20 by W+10

    We have: . A \;=\;(L+20)(W+10) \;=\;LW + 10L + 20W + 200 .[2]


    Substitute [1] into [2]: . A \;=\;L\left(\tfrac{1800}{L}\right) + 10L + 20\left(\tfrac{1800}{L}\right) + 200

    . . which simplifies to: . A \;=\;10L + 36000L^{-1} + 200


    Differentiate and equate to zero: . 10 - 36000L^{-2} \:=\:0

    Multiply by L^2\!:\;\;10L^2 - 36000 \:=\:0 \quad\Rightarrow\quad 10L^2 \:=\:36000 \quad\Rightarrow\quad L^2\:=\:3600

    . . Hence: . L \:=\:60

    Substitute into [1]: . W \:=\:\frac{1800}{60} \quad\Rightarrow\quad W\:=\:30


    Therefore, the property will be: . \begin{Bmatrix}L+20 &=&  80\text{ ft} \\ & & \text{by} \\W+10 &=&  40\text{ ft} \end{Bmatrix}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. European call option
    Posted in the Business Math Forum
    Replies: 4
    Last Post: October 12th 2011, 11:42 AM
  2. question on put call parity
    Posted in the Business Math Forum
    Replies: 4
    Last Post: May 21st 2011, 04:18 AM
  3. Balls (don't know what else to call it)
    Posted in the Differential Geometry Forum
    Replies: 1
    Last Post: April 17th 2010, 03:26 AM
  4. A puzzle and a call for help.
    Posted in the Math Puzzles Forum
    Replies: 14
    Last Post: August 23rd 2009, 07:39 PM

Search Tags


/mathhelpforum @mathhelpforum