# Antiverivative check!

• Oct 22nd 2008, 10:46 PM
jvignacio
Antiverivative check!
Get the anti-derivative of

$\displaystyle = 5x^3 - 6x + 7\sqrt[3]{x} - 8 + \frac{9}{\sqrt{x}} - \frac{10}{x} + \frac{11}{x^3}$

is

$\displaystyle = \frac{5}{4}x^4 - 3x^2 + \frac{21}{4}x^\frac{4}{3} - 8x + 18x^\frac{1}{2} - 0 - \frac{11}{2}x^{-2} + C$

correct??? thank u
• Oct 22nd 2008, 11:01 PM
janvdl
Quote:

Originally Posted by jvignacio
Get the anti-derivative of

$\displaystyle = 5x^3 - 6x + 7\sqrt[3]{x} - 8 + \frac{9}{\sqrt{x}} - \frac{10}{x} + \frac{11}{x^3}$

is

$\displaystyle = \frac{5}{4}x^4 - 3x^2 + \frac{21}{4}x^\frac{4}{3} - 8x + 18x^\frac{1}{2} - 0 - \frac{11}{2}x^{-2} + C$

correct??? thank u

That 0 should be ln actually.

Otherwise it looks fine to me unless I missed something. (Clapping)

$\displaystyle = \frac{5}{4}x^4 - 3x^2 + \frac{21}{4}x^\frac{4}{3} - 8x + 18x^\frac{1}{2} - 10 \ln (x) - \frac{11}{2}x^{-2} + C$
• Oct 23rd 2008, 01:30 AM
jvignacio
Quote:

Originally Posted by janvdl
That 0 should be ln actually.

Otherwise it looks fine to me unless I missed something. (Clapping)

$\displaystyle = \frac{5}{4}x^4 - 3x^2 + \frac{21}{4}x^\frac{4}{3} - 8x + 18x^\frac{1}{2} - 10 \ln (x) - \frac{11}{2}x^{-2} + C$

thanks mateeee!! dont know why it shud be 10ln(x) tho?