They can all be done with straight residue integration. Just use an upper half-disc ( ) right? They can be made to all go to zero along the upper half-arc contour if the trigs are expressed in exponential forms , and the straight contours across the real axis are the integrals you want. I'll do the third one:

The integral is the imaginary component of the limit of a contour integral around the upper half-disc as the radius goes to infinity. This contour enclosed only two poles given by the set . In the limit, the integral over the half-arc goes to zero leaving only the segment over the real axis remaining. Since , then the desired integral is the imaginary part of the contour integral which is simply times the two residues.

Similar for the second one and the first one just use residue integration directly on it using the same contour.