Hi I am trying to solve the following problem: find the constant A0, A1, A2 such that

$\displaystyle \frac{1}{(1+(a0)x^2-i(b0)x)(1+(a1)x^2-i(b1)x)(1+(a2)x^2-i(b2)x)}$

=$\displaystyle \frac{A0}{(1+(a0)x^2-i(b0)x)}$+$\displaystyle \frac{A1}{(1+(a1)x^2-i(b1)x)}$+$\displaystyle \frac{A2}{(1+(a2)x^2-i(b2)x)}$

That s drives me mad! Any help for me please.[/quote]