# partial fractions

• Oct 9th 2008, 01:42 AM
tylerd
partial fractions
Hi I am trying to solve the following problem: find the constant A0, A1, A2 such that

$\frac{1}{(1+(a0)x^2-i(b0)x)(1+(a1)x^2-i(b1)x)(1+(a2)x^2-i(b2)x)}$
= $\frac{A0}{(1+(a0)x^2-i(b0)x)}$+ $\frac{A1}{(1+(a1)x^2-i(b1)x)}$+ $\frac{A2}{(1+(a2)x^2-i(b2)x)}$

• Oct 9th 2008, 04:55 AM
p00ndawg
Multiply $
\frac{A0}{(1+(a0)x^2-i(b0)x)}$
+ $\frac{A1}{(1+(a1)x^2-i(b1)x)}$+ $\frac{A2}{(1+(a2)x^2-i(b2)x)}$

by $({(1+(a0)x^2-i(b0)x)(1+(a1)x^2-i(b1)x)(1+(a2)x^2-i(b2)x)})$

you should be left with this, and solve.

$(A0)(1+(a1)x^2-i(b1)x)(1+(a2)x^2-i(b2)x)$ $+(A1)(1+(a0)x^2-i(b0)x)(1+(a2)x^2-i(b2)x)$
$+(A2)(1+(a0)x^2-i(b0)x)(1+(a1)x^2-i(b1)x)$
• Oct 9th 2008, 10:40 PM
tylerd
Hi thank you for your help. However, solving this http://www.mathhelpforum.com/math-he...20b39a9c-1.gifhttp://www.mathhelpforum.com/math-he...1a10a6fa-1.gif
http://www.mathhelpforum.com/math-he...1010ee44-1.gif=1 then?? but only one equation for 3 unknown constants? How is possible ?