I need help with the following indefinite integral: int (x+2)/sqrt(4-x^2).
I have tried parts several times and have come up empty. Thanks!
Hello, bmnorvil!
Make two integrals . . .$\displaystyle \int \frac{x+2}{\sqrt{4-x^2}}\,dx$
$\displaystyle \int\left[\frac{x}{\sqrt{4-x^2}} + \frac{2}{\sqrt{4-x^2}}\right]\,dx$
. . $\displaystyle =\;\underbrace{\int x(4-x^2)^{-\frac{1}{2}}\,dx}_{u \:=\: 4-x^2} \;+ \;2\underbrace{\int\frac{dx}{\sqrt{4-x^2}}}_{\text{arcsine}} $