Originally Posted by

**Yogi_Bear_79** To see if I understand, I have posted a second question that I worked brom begining to end, please validate.

Q. Evaluate $\displaystyle \int_{4}^{1} \frac {(4+\sqrt x)^2}{2\sqrt x}dx$

A. $\displaystyle \int_{4}^{1} \frac {(4+\sqrt x)^2}{2\sqrt x}dx = \left{ \frac{1}{3} \sqrt x(x+12 \sqrt x +48 \right]_{4}^{1}=51 -20 = 30$

First you TeX needs tidying up

$\displaystyle \int_{4}^{1} \frac {(4+\sqrt x)^2}{2\sqrt x}dx$$\displaystyle

= \left[ \frac{1}{3} \sqrt x(x+12 \sqrt x +48) \right]_{4}^{1}$

$\displaystyle

=(1+12+48)/3 -(4+12.2+48)2/3$

$\displaystyle =61/3-152/3=91/3$